
Photographic Image Synthesis with Cascaded Refinement
Networks Implementation

Deep Learning for Computer Graphics Final Project

Saurabh Kumar
 Department of Computer Science

& Engineering
 Texas A&M University

 College Station, Texas, USA
thesaurabh@tamu.edu

ABSTRACT
This is the final project for my Deep Learning for Computer
Graphics course. In this project, I have implemented a previously
published paper in the field of Computer Graphics. I have
implemented it using pytorch and generated my results with slight
modifications. We will discuss the entire project in more detail in
the following sections.

So, the overall objective of this project is that given a semantic
layout of a scene, we want to generate a photorealistic image of a
scene that conforms to the input layout. The generated image
should be realistic in appearance compared to the real-world
scenes. The input to this project is a semantic label map. I have
compared the output images generated by my implementation with
the images generated by the original paper implemented by the
authors in this paper and provided my feedback about areas of
improvements.

1. Introduction
Refer to the figure below for input image for this algorithm. The
input image is a semantic label map. The output will be an image
describing a real-world scene. From the image below, we realize
that there are multiple valid and correct output images that can be
generated for a single input image.

Figure 1: Input Semantic Layout

A sample corresponding output image to be generated by this
system can be as follows.

Figure 2: Output Photorealistic Image

This process can be described as the reverse of Image
Segmentation process. Image segmentation in computer vision is
the process of partitioning a digital image into multiple segments.
So this process is the exact opposite of image segmentation where
we generate a digital image from the segmented image.

As already mentioned, the input which is a semantic label map is
a representation of a scene where the different components of the
scene are represented by different semantic classes and are color
coded.

2. Related Work
A lot of work has been done in this area in the previous
researches. This paper is the implementation of one such
publication that describes a method of generating photorealistic
images from semantic layouts. The paper is titled “Photographic
Image Synthesis with Cascaded Refinement Networks”
authored by Qifeng Chen and Vladlen Koltun.

This paper proposes an approach for synthesizing photographic
images by direct supervised learning of single feedforward
convolutional network while trying to minimize regression loss.
The algorithm presented in this paper is proven to work
seamlessly for generating images of up to 2MP resolution.

Deep Learning for Computer Graphics Saurabh Kumar

The approach implemented functions as a rendering engine that
takes a two-dimensional semantic specification of a scene and
produces a corresponding realistic photographic image. Unlike
contemporaneous work, this approach does not rely on adversarial
training.

I have implemented the exact algorithm as presented in the paper
above with slight modifications. The paper proposes a 10 module
Network for synthesizing images of resolution 1024*2048 where
as I use a 8 module network to synthesize images of resolution
256*512. There are some other differences as well such as the
weights to calculate the contribution of various modules to the
overall loss in the loss function which I have chosen randomly
based on experiments for good results. There are also differences
in the mechanism of up sampling the feature maps and down
sampling the semantic label maps for each module.

KEYWORDS
Semantic Layout, Deep Learning, Image Segmentation, Computer
Graphics

Reference:
Qifeng Chen and Vladlen Koltun. 2017. Photographic Image Synthesis
with Cascaded Refinement Networks: In International Conference on
Computer Vision (ICCV’17). Venice, Italy,

3. Algorithm
The algorithm in this paper uses the Cascaded Refinement
Network (CRN) which is a cascade of refinement modules. Each
module Mi operates at a given resolution. In my implementation,
the resolution of the first module is 8×4. Resolution is doubled
between consecutive modules in the CRN. Let wi ×hi be the
resolution of module i. Then the first module, M0 receives the
semantic layout L as input (down sampled to 8×4) and produces a
feature layer F0 at resolution 8 ×4 as output. All other modules Mi
(for i6= 0) are structurally identical in behavior. Mi receives a
concatenation of the semantic layout L down sampled to wi×hi
and the feature layer F i−1 up sampled to wi×hi as input and
produces feature layer Fi as output.

Each module Mi consists of three feature layers, an input layer, an
intermediate layer, and an output layer. The 3 layers in a module
can be visualized as below in figure 3. The input layer has
dimensionality wi×hi×(di−1 + c) and is a concatenation of the
down sampled semantic layout L (c channels) and a bilinearly up
sampled feature layer Fi−1 (di−1 channels).

Figure 3: Cascaded Refinement Network Module

Each layer is followed by 3×3 convolutions, layer normalization,
and LReLU nonlinearity. The output layer of the final module is
not followed by normalization or nonlinearity. Since this is an
exact implementation of an original paper, please refer to the
original paper for all the details about the architecture.

4. Implementation
The original paper was implemented by the authors using
TensorFlow. I have implemented the same paper using Pytorch.
This implementation was trained and tested successfully. The
challenges faced while implementation and the details for
implementing the project.

Talking about the challenges faced during the implementation of
this project, the most important challenge that I faced was getting
familiar with the pytorch framework for overall implementation of
the project. I don’t have a lot of experience with Python
development let alone pytorch and using it for the overall
development was definitely a gruesome task. Once I was able to
get a model implemented that was in execution ready state, the
execution seemed impossible. The execution part for training the
model just did not work even on google colab. Google colab
provides free GPU’s for our tasks but the training kept on running
out of memory. I had to look for alternatives and TAMU HPRC
seemed like a good idea. I used my TAMU HPRC account since it
provides GPU’s for computing, but I was not able to find the
python packages installed on the HPRC machines. I tried to install
those packages myself, but the system did not let me. Looking for
other alternatives to test my program, it turned towards free trail
access to Amazon Web Services. Although the AWS website said
free trial, it basically relied on the pay for resources as you go
model and just the signup seemed to be free. So, I then tried out
Google Cloud Platform which gives 300$ as starting credit and a
free trail for 12 months. On google cloud, we have to select the
zone where the VM instance is being created and we can also
select the hardware resources to be used in our VM such as the
number of CPU’s, the amount and type of memory and the
number of GPU’s. I finally realized that the usage of GPU’s was
not allowed with the free account and upgraded to the paid
account in order to run my training.

Another challenge was to obtain the dataset for training. I had to
write scripts to filter out and organize the dataset from the overall
data provided on the website for my training purpose.

Talking about the other details pertaining the project, I
implemented the project to only generate images of resolution
256*512. I used the python notebook on google colab for initial
development of the project. It allowed me to perform syntax and
semantic checks on my python code as well as test out the CUDA
code for using GPU’s. Since colab does provide access to GPU’s,
I could test out the program syntactically and only ran out of
memory while training.

Deep Learning for Computer Graphics Saurabh Kumar

For training, I experimented with using both the cityscapes dataset
and the NYU indoor scene dataset as I mentioned in my project
proposal. It seemed like the model also learnt the way those
semantic label maps are generated and produced very blurry
results when both of them were used. So finally, I decided to just
use the cityscapes dataset to train and test my model. I used the
gtFine_trainvaltest dataset for the semantic images and the
leftImg8bit_trainvaltest for the corresponding real images as
ground truth for training the model.

I also tried out random sample semantic label maps from the
internet for testing my model, but the results obtained were not
good.

5. Results
The results of this implementation are shown below. Figure 4
shows a sample input semantic image and Figure 5 shows the
corresponding photographic image generated by my system. The
resolution of the input and output images are 256*512.

Figure 4: Input Semantic Layout to my system

Figure 5: Output Image generated by my system

As we can see in the images above, although blurry, the system
generated realistic looking image of the scene depicted by the
semantic label map. We can correlate the objects in the semantic
label map with the objects present in the generated image such as
the cars, the trees, the building and the Mercedes logo.

Figure 6: Input Semantic Layout to Original Authors

Implementation

Figure 7: Output Image generated by Original Authors

Implementation

Comparing with the results obtained by the original authors of the
paper, the figures above shows the results achieved by authors of
the original paper. The Figure 6 above shows a sample input
semantic label map and Figure 7 shows the corresponding
photographic image generated by the authors implementation. The
generated image is the same resolution as ours in order to make a
fair comparison in our approaches. As we can see, the output
image generated by the authors implementation looks much more
vivid and realistic as compared to my image.

One of the reasons due to which my results are not as good could
be the fact that I did not train my model on entire cityscapes
dataset whereas the author of the paper did. I trained my model
only on one part of the cityscape’s dataset consisting of less than
3000 images. Secondly, I trained my model in one go whereas
training the model in module wise parts could have resulted in
way better results.

Overall, I am satisfied with the results generated by my
experiment given the scope of the project and the constraints in
terms of time and resources. I certainly believe that the results can
be improved provided sufficient training and tweaking of the
parameters is done as well as incremental training is performed on
the model.

Deep Learning for Computer Graphics Saurabh Kumar

ACKNOWLEDGMENTS
I would really like to thank the authors of the original paper for
providing a detailed approach which really helped me in this
project.

REFERENCES
[1] Qifeng Chen and Vladlen Koltun. 2017. Photographic Image Synthesis with

Cascaded Refinement Networks: In International Conference on Computer
Vision (ICCV’17). Venice, Italy,

[2] PyTorch Tutorials,
https://pytorch.org/tutorials/beginner/nlp/pytorch_tutorial.html

[3] GPU accelerated computing with python, https://developer.nvidia.com/how-to-
cuda-python

