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ABSTRACT 
This is the final project for my Deep Learning for Computer 
Graphics course. In this project, I have implemented a previously 
published paper in the field of Computer Graphics. I have 
implemented it using pytorch and generated my results with slight 
modifications. We will discuss the entire project in more detail in 
the following sections. 

So, the overall objective of this project is that given a semantic 
layout of a scene, we want to generate a photorealistic image of a 
scene that conforms to the input layout. The generated image 
should be realistic in appearance compared to the real-world 
scenes. The input to this project is a semantic label map. I have 
compared the output images generated by my implementation with 
the images generated by the original paper implemented by the 
authors in this paper and provided my feedback about areas of 
improvements. 

 

1. Introduction 
Refer to the figure below for input image for this algorithm. The 
input image is a semantic label map. The output will be an image 
describing a real-world scene. From the image below, we realize 
that there are multiple valid and correct output images that can be 
generated for a single input image.  

 

 

Figure 1: Input Semantic Layout 

 

A sample corresponding output image to be generated by this 
system can be as follows. 

 

Figure 2: Output Photorealistic Image 

This process can be described as the reverse of Image 
Segmentation process. Image segmentation in computer vision is 
the process of partitioning a digital image into multiple segments. 
So this process is the exact opposite of image segmentation where 
we generate a digital image from the segmented image. 

As already mentioned, the input which is a semantic label map is 
a representation of a scene where the different components of the 
scene are represented by different semantic classes and are color 
coded.  

2. Related Work 
A lot of work has been done in this area in the previous 
researches. This paper is the implementation of one such 
publication that describes a method of generating photorealistic 
images from semantic layouts. The paper is titled “Photographic 
Image Synthesis with Cascaded Refinement Networks” 
authored by Qifeng Chen and Vladlen Koltun.  

This paper proposes an approach for synthesizing photographic 
images by direct supervised learning of single feedforward 
convolutional network while trying to minimize regression loss. 
The algorithm presented in this paper is proven to work 
seamlessly for generating images of up to 2MP resolution.   
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The approach implemented functions as a rendering engine that 
takes a two-dimensional semantic specification of a scene and 
produces a corresponding realistic photographic image. Unlike 
contemporaneous work, this approach does not rely on adversarial 
training.  
 
I have implemented the exact algorithm as presented in the paper 
above with slight modifications. The paper proposes a 10 module 
Network for synthesizing images of resolution 1024*2048 where 
as I use a 8 module network to synthesize images of resolution 
256*512. There are some other differences as well such as the 
weights to calculate the contribution of various modules to the 
overall loss in the loss function which I have chosen randomly 
based on experiments for good results. There are also differences 
in the mechanism of up sampling the feature maps and down 
sampling the semantic label maps for each module. 
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3. Algorithm 
The algorithm in this paper uses the Cascaded Refinement 
Network (CRN) which is a cascade of refinement modules. Each 
module Mi operates at a given resolution. In my implementation, 
the resolution of the first module is 8×4. Resolution is doubled 
between consecutive modules in the CRN. Let wi ×hi be the 
resolution of module i. Then the first module, M0 receives the 
semantic layout L as input (down sampled to 8×4) and produces a 
feature layer F0 at resolution 8 ×4 as output. All other modules Mi 
(for i6= 0) are structurally identical in behavior. Mi receives a 
concatenation of the semantic layout L down sampled to wi×hi 
and the feature layer F i−1 up sampled to wi×hi as input and 
produces feature layer Fi as output.  
 
Each module Mi consists of three feature layers, an input layer, an 
intermediate layer, and an output layer. The 3 layers in a module 
can be visualized as below in figure 3. The input layer has 
dimensionality wi×hi×(di−1 + c) and is a concatenation of the 
down sampled semantic layout L (c channels) and a bilinearly up 
sampled feature layer Fi−1 (di−1 channels). 
 
 

 
Figure 3: Cascaded Refinement Network Module 

 
 

Each layer is followed by 3×3 convolutions, layer normalization, 
and LReLU nonlinearity. The output layer of the final module is 
not followed by normalization or nonlinearity. Since this is an 
exact implementation of an original paper, please refer to the 
original paper for all the details about the architecture. 

4. Implementation 
The original paper was implemented by the authors using 
TensorFlow. I have implemented the same paper using Pytorch. 
This implementation was trained and tested successfully. The 
challenges faced while implementation and the details for 
implementing the project. 
 
Talking about the challenges faced during the implementation of 
this project, the most important challenge that I faced was getting 
familiar with the pytorch framework for overall implementation of 
the project. I don’t have a lot of experience with Python 
development let alone pytorch and using it for the overall 
development was definitely a gruesome task. Once I was able to 
get a model implemented that was in execution ready state, the 
execution seemed impossible. The execution part for training the 
model just did not work even on google colab. Google colab 
provides free GPU’s for our tasks but the training kept on running 
out of memory. I had to look for alternatives and TAMU HPRC 
seemed like a good idea. I used my TAMU HPRC account since it 
provides GPU’s for computing, but I was not able to find the 
python packages installed on the HPRC machines. I tried to install 
those packages myself, but the system did not let me. Looking for 
other alternatives to test my program, it turned towards free trail 
access to Amazon Web Services. Although the AWS website said 
free trial, it basically relied on the pay for resources as you go 
model and just the signup seemed to be free. So, I then tried out 
Google Cloud Platform which gives 300$ as starting credit and a 
free trail for 12 months. On google cloud, we have to select the 
zone where the VM instance is being created and we can also 
select the hardware resources to be used in our VM such as the 
number of CPU’s, the amount and type of memory and the 
number of GPU’s. I finally realized that the usage of GPU’s was 
not allowed with the free account and upgraded to the paid 
account in order to run my training.  
 
Another challenge was to obtain the dataset for training. I had to 
write scripts to filter out and organize the dataset from the overall 
data provided on the website for my training purpose. 
 
Talking about the other details pertaining the project, I 
implemented the project to only generate images of resolution 
256*512. I used the python notebook on google colab for initial 
development of the project. It allowed me to perform syntax and 
semantic checks on my python code as well as test out the CUDA 
code for using GPU’s. Since colab does provide access to GPU’s, 
I could test out the program syntactically and only ran out of 
memory while training. 
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For training, I experimented with using both the cityscapes dataset 
and the NYU indoor scene dataset as I mentioned in my project 
proposal. It seemed like the model also learnt the way those 
semantic label maps are generated and produced very blurry 
results when both of them were used. So finally, I decided to just 
use the cityscapes dataset to train and test my model. I used the 
gtFine_trainvaltest dataset for the semantic images and the 
leftImg8bit_trainvaltest for the corresponding real images as 
ground truth for training the model.  
 
I also tried out random sample semantic label maps from the 
internet for testing my model, but the results obtained were not 
good. 

5. Results 
The results of this implementation are shown below. Figure 4 
shows a sample input semantic image and Figure 5 shows the 
corresponding photographic image generated by my system. The 
resolution of the input and output images are 256*512. 
 
 

 
Figure 4: Input Semantic Layout to my system 

 
 

 
Figure 5: Output Image generated by my system 

 
As we can see in the images above, although blurry, the system 
generated realistic looking image of the scene depicted by the 
semantic label map. We can correlate the objects in the semantic 
label map with the objects present in the generated image such as 
the cars, the trees, the building and the Mercedes logo.  
 

 
Figure 6: Input Semantic Layout to Original Authors 

Implementation 
 
 

 
Figure 7: Output Image generated by Original Authors 

Implementation 
 
Comparing with the results obtained by the original authors of the 
paper, the figures above shows the results achieved by authors of 
the original paper. The Figure 6 above shows a sample input 
semantic label map and Figure 7 shows the corresponding 
photographic image generated by the authors implementation. The 
generated image is the same resolution as ours in order to make a 
fair comparison in our approaches. As we can see, the output 
image generated by the authors implementation looks much more 
vivid and realistic as compared to my image. 
 
One of the reasons due to which my results are not as good could 
be the fact that I did not train my model on entire cityscapes 
dataset whereas the author of the paper did. I trained my model 
only on one part of the cityscape’s dataset consisting of less than 
3000 images. Secondly, I trained my model in one go whereas 
training the model in module wise parts could have resulted in 
way better results. 
 
Overall, I am satisfied with the results generated by my 
experiment given the scope of the project and the constraints in 
terms of time and resources. I certainly believe that the results can 
be improved provided sufficient training and tweaking of the 
parameters is done as well as incremental training is performed on 
the model. 
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